1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
alysagwinn9486 edited this page 2025-02-18 07:17:09 +08:00
This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion criteria to construct, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled versions of the designs also.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses reinforcement finding out to boost thinking abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A key distinguishing feature is its support learning (RL) action, which was utilized to fine-tune the design's actions beyond the standard pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adapt better to user feedback and objectives, eventually enhancing both importance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, suggesting it's geared up to break down complex questions and factor through them in a detailed manner. This guided thinking procedure permits the model to produce more precise, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT abilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually captured the industry's attention as a flexible text-generation model that can be integrated into numerous workflows such as agents, sensible reasoning and data interpretation tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion parameters, allowing effective reasoning by routing queries to the most appropriate specialist "clusters." This approach enables the design to specialize in various problem domains while maintaining total efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, garagesale.es 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more efficient models to mimic the habits and of the larger DeepSeek-R1 model, utilizing it as a teacher model.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise releasing this model with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid harmful material, and evaluate designs against key security criteria. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to various usage cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limit boost, produce a limit increase demand and connect to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For directions, see Establish authorizations to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, prevent hazardous content, and examine models against essential safety criteria. You can carry out precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to assess user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general flow includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After getting the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the final outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas show inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and setiathome.berkeley.edu specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and choose the DeepSeek-R1 design.

The design detail page supplies vital details about the model's capabilities, rates structure, and execution standards. You can find detailed use directions, including sample API calls and code bits for combination. The model supports numerous text generation tasks, consisting of content development, code generation, and question answering, using its support finding out optimization and CoT thinking capabilities. The page also includes implementation alternatives and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, choose Deploy.

You will be prompted to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, get in a variety of circumstances (in between 1-100). 6. For example type, select your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can configure sophisticated security and facilities settings, including virtual personal cloud (VPC) networking, service function permissions, and file encryption settings. For most use cases, the default settings will work well. However, for production implementations, you may desire to review these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the deployment is complete, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in playground to access an interactive user interface where you can explore various triggers and adjust design specifications like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal results. For example, content for reasoning.

This is an exceptional way to explore the design's thinking and text generation capabilities before incorporating it into your applications. The play ground offers instant feedback, helping you comprehend how the model responds to various inputs and letting you tweak your prompts for optimal outcomes.

You can quickly check the design in the playground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually developed the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures inference criteria, and sends out a demand to create text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pipewiki.org pre-trained designs to your use case, with your information, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides two practical approaches: using the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to help you choose the technique that best fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design browser shows available designs, with details like the provider name and design capabilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card shows crucial details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if appropriate), suggesting that this model can be signed up with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to view the design details page.

    The design details page consists of the following details:

    - The model name and provider details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you deploy the model, it's recommended to evaluate the design details and license terms to validate compatibility with your use case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the instantly generated name or create a customized one.
  1. For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the variety of instances (default: 1). Selecting proper instance types and counts is essential for cost and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we highly suggest adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the model.

    The release procedure can take a number of minutes to finish.

    When release is complete, your endpoint status will alter to InService. At this point, the design is all set to accept inference demands through the endpoint. You can keep an eye on the implementation progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the release is total, you can conjure up the model utilizing a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get going with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that shows how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for deploying the model is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To avoid unwanted charges, complete the actions in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the design utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations.
  5. In the Managed releases area, locate the endpoint you desire to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the right deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build ingenious options utilizing AWS services and accelerated compute. Currently, he is concentrated on establishing techniques for fine-tuning and optimizing the inference performance of big language designs. In his leisure time, Vivek delights in hiking, viewing films, and bytes-the-dust.com trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing options that assist clients accelerate their AI journey and unlock service value.